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Bounds on the Growth of the Velocity Support for the
Solutions of the Vlasov�Poisson Equation in a Torus
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A bound on the growth of the velocity for the Vlasov�Poisson equation in a
torus is given in one and two dimensions. The main tool used in the proof is a
partition into fast and slow particles and the ergodic property of the free motion
in a torus.
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1. INTRODUCTION

In the present paper we study a particular feature of the solution f (x
�
, v

�
, t)

of the Vlasov�Poisson equation in a flat torus Td=[0, 2?]d, where d is the
dimension of the space. The Vlasov�Poisson equation reads:

�t f +v
�
} {x f +E

�
(x

�
, t) } {v f =0, x

�
# Td , v

�
# Rd (1.1)

where

E
�
={U, 2U=\&\*, (1.2)

the density of the electrons \ is

\(x
�
, t)=|

R d
dv

�
f (x

�
, v

�
, t) (1.3)

f (x
�
, v

�
, t)�0, |

Td
|

Rd
dx

�
dv

�
f (x

�
, v

�
, t)=M>�, (1.4)

and \*=(2?)&d M is the constant density of the ions.
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In the present paper we want to give a nontrivial bound on the growth
of the velocity

V(t)=sup |v
�
| (1.5)

where the supremum is taken on the (x
�
, v

�
) # support of f (x

�
, v

�
, t).

We suppose that initially

f (x
�
, v

�
, 0)= fo(x

�
, v

�
)=0 if |v

�
|>V* (V*<�) (1.6)

& f (x
�
, v

�
, 0)&�=sup fo(x�

, v
�
)<� (1.7)

We prove that there exists an : such that for any t�0 we have:

V(t)�(C1+C2 t): (1.8)

where from now on we denote by Ci or C any positive constant independent
of time.

The goodness of the result depends on the value of :. There exist situa-
tions in which the maximal velocity remains always bounded. A trivial
example is given by the stationary states. A more sophisticated example
could be given by the so called ``Landau damping,'' in which the following
conjecture is made: there exist initial conditions for which the time evolu-
tion produces asymptotically a free motion. This conjecture is justified
roughly by linearizing the equation and it has been rigorously proved in
one dimension in ref. 3.

In general the maximal velocity could grow. How fast? For instance if
we suppose E

�
bounded (of course it is true in one dimension only, while

in higher dimension there is a singularity in the interaction), then the result
with :=1 is trivial. The goal of the present paper is to obtain :<1.

The interest in the present paper lies also in the technique we use. We
show a non-trivial application to a system of infinitely many degrees of
freedom of an idea largely used in many problems with few degrees of
freedom (for instance in celestial mechanics).

More precisely the main tool in the proof is a partition into fast and
slow particles. The fastest particle feels an electric field mainly produced
by the slow particles. In fact, due to the fact that the kinetic energy of
the system is bounded from above, the fast particles are few. The field
produced by the slow particles changes on a time scale much larger than
that of the fastest particle. We will show that this field, by an average effect,
decreases as the maximal velocity increases.

The problem to give some bounds to the growth of the velocity support
for the solutions of the Vlasov�Poisson equation has been studied as an
essential tool in the proof of existence and the uniqueness theorems (for
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recent results in the whole space see refs. 4, 5, 9, 11, and 13, in a torus
see ref. 2). Further papers study the growth of the velocity by using the
dispersive properties of a plasma in R3 see refs. 6�8, 10. These researches
study a different problem from the present one where the average effects of
the motion on a torus are essential due to the absence of the dispersive
property.

The solution depends on the dimension of the space. First we study in
Section 2 the one-dimensional case, where the result follows from a time-
average theorem only. Then in Section 3 we investigate the more interest-
ing two-dimensional case, where we have to control the singularity of the
interaction and we will use an ergodic property of the free motion. In three
dimensions the singularity of the interaction is too large and we only
handle with a mollified version.

2. PRELIMINARIES AND ONE-DIMENSIONAL CASE

The Vlasov�Poisson equation has been introduced in connection to
the plasma physics(12) and widely studied. The characteristic curves of the
Vlasov�Poisson equation are the trajectories of a charged particle interact-
ing in the mean field of all the others. The measure dx

�
dv

�
is conserved

during the motion. Moreover

f (x
�
(t, x

� 0 , v
� 0 , t0), v

�
(t, x

� 0 , v
� 0 , t0), t)= f (x

� 0 , v
� 0 , t0) (2.1)

where x
�
(t, x

� 0 , v
� 0 , t0), v

�
(t, x

� 0 , v
� 0 , t0) is the evolution at time t of the particle

which at time t0 was in x
� 0 , v

� 0 .
Sometimes in the sequel we shall denote x

�
(t, x

� 0 , v
� 0 , t0), v

�
(t, x

� 0 , v
� 0 , t0)

simply by x
�
(t), v

�
(t) when no confusion arises. In particular from (2.1) it

follows:

& f (x
�
, v

�
, t)&�=& f (x

�
, v

�
, 0)&� (2.2)

From the energy conservation and the repulsive nature of the interaction
between the electrons, we have the useful inequality:

|
Td

|
R d

dx
�

dv
�

|v
�
|2 f (x

�
, v

�
, t)�C<� (2.3)

This implies that, for any time,

|
Td

|
|v
�
|>v�

dx
�

dv
�

f (x
�
, v

�
, t)�C |v� |&2 (2.4)

that is, the large velocities are quite rare.
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We study now the case d=1 and prove the following theorem:

Theorem 2.1. Consider the Vlasov�Poisson equation (1.1)�(1.4) for
d=1 with the initial conditions (1.6), (1.7). Then the inequality (1.8) holds
with := 1

2 .

We prove this theorem at the end of this section. The proof is an easy
corollary of the following lemma:

Lemma 2.1. Consider an arbitrary time t1 and define At1
as the set

of particles (called test particles) having at this time a velocity |v
�
|�V(t1)�2

(where V(t) is defined in (1.5)). There exists a positive constant C3 ,
depending only on the initial data, such that if V(t1)�C3 then, for any
particle in At1

|v(t1+2)&v(t1)|�C4

2
V(t1)

(2.5)

where 2 is the time of the first return of the particle to the position
occupied at time t1 . Moreover 2 satisfies the inequalities

C5

V(t1)
�2�

C6

V(t1)
(2.6)

Proof of Lemma 2.1. Let us give some preliminary results.
First of all the electrical field is bounded by a constant CE . Therefore,

for any y, u,

|v(t, y, u, t1)&u|�CE |t&t1| (2.7)

Let us consider a test particle at (x� , v� ). By definition |v� |�V(t1)�2�C3 �2.
For the sake of simplicity let us suppose v� >0. In the time interval t #
(t1 , t1+8?�V ), because of (2.7) we get

|v(t1 , x� , v� , t)&v� |�CE
8?
V

�CE
8?
C3

Taking C3 such that CE<C 2
3�64? we get

|v(t1 , x� , v� , t)&v� |�
C3

8
�

v�
4

and hence

1
4v� �v(t1 , x� , v� , t)� 5

4v�
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Therefore, the lenght of the circle being 2?, and (x� , v� ) # At1
, we get (2.6).

Substituting in (2.7) we get

|v(t, y, u, t1)&u|�
C
V

(2.8)

for any t # [t1 , t1+2]. Finally integrating with respect to time we obtain

|x(t, y, u, t1)& y| T1
�

C
V \ |u|+

C
V + (2.9)

where | |T1
denotes the distance on the circle.

We now prove Eq. (2.5). We study the growth of the velocity of a test
particle by a control of the time evolution of the kinetic energy. Obviously:

d
dt

|v(t)|2

2
=E(x, t) v(t) (2.10)

So we need to control the integral of the right hand side of (2.10) along a
trajectory of the particle:

|
t1+2

t1

dt E(x(t), t) v(t) (2.11)

We remark that, the integration path being closed, this term would vanish
if the electric field would be independent of time. This hypothesis, of
course, is not verified, but we will show that it is ``almost'' verified.

We now want to evaluate (2.11).

|
t1+2

t1

dt E(x(t), t) v(x(t), t)

=|
t1+2

t1

dt E(x(t), t1) v(t)+|
t1+2

t1

dt(E(x(t), t)&E(x(t), t1)) v(t) (2.12)

We estimate the two terms of the right hand side of (2.12). The first term
is:

|
t1+2

t1

dt E(x(t), t1) v(t)=|
x(t1+2)

x(t1)
dx E(x, t1)=0 (2.13)

In fact the integration path is closed and so the integral is equal to the
difference of the potential U calculated in the same point, that is zero.
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Remark the central role played by the global neutrality of the fluid. Of
course this hypothesis is essential for stating the Vlasov�Poisson equation
in a torus. As a consequence of the neutrality, the potential is a single-
valued function.

We now evaluate the second term of the right hand side of (2.8). From
(1.2) we have

E(x, t)=|
2?

0
dx$ K(x&x$) \(x$, t) (2.14)

where

K(x)=
1
2

&
x

2?
(2.15)

Remark that K has a jump in x=0 and is Lipschitz elsewhere.
We write explicitly the dependence on the variable at time t1 . By using

(2.1) and the conservation in time of the measure, we have:

|
t1+2

t1

dt(E(x(t), t)&E(x(t), t1)) v(t)

=|
t1+2

t1

dt v(t) _|
2?

0
dx$ K(x(t)&x$) |

R

dv$ f (x$, v$, t)

&|
2?

0
dy K(x(t)& y) |

R

du f ( y, u, t1)&
=|

t1+2

t1

dt v(t) |
2?

0
dy |

R

du

_f ( y, u, t1)[K(x(t)&x(t, y, u, t1))&K(x(t)& y)] (2.16)

We make a partition of the phase space of the torus at time t1 . Of
course the whole electric field is the sum of the contributions of the electric
field produced by the particles in each element of the partition. We divide
the particles producing the electric field E into many different classes Bh :

B0=[x, v | |v|<a1]
(2.17)

Bh=[x, v | ah�|v|<ah+1], ah+1=2ah , a1=v* h=1, 2,...

where v* is a fixed quantity depending only on the initial data. In particular
v* is independent of V.
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Equation (2.16) can be written as �h Ih where

Ih=|
t1+2

t1

dt v(t) |
Bh

dy du f ( y, u, t1)[K(x(t)&x(t, y, u, t1))&K(x(t)& y)]

(2.18)

In each Bh we make a further division into two parts: at any time t
we consider the particles y, u such that |x(t)& y|T1

�C7 ah V &1 and the
other ones. We choose C7 large enough in such a way that if |x(t)& y|T1

�C7 ah V &1 then |x(t)&x(t, y, u, t1)| T1
�(C7�2) ahV &1. This is possible

because of (2.8).
More precisely we define

D1, h=[(t, x, v): (x, v) # Bh , |x(t)& y| T1
<C7ahV &1] (2.19)

and D2, h as the complementary set of D1, h in (t1 , t1+2)_Bh .
We can write

Ih=I1, h+I2, h (2.20)

where, for _=1, 2

I_, h=|
D_, h

dt dy du f ( y, u, t1)[K(x(t)&x(t, y, u, t1))&K(x(t)& y)]

(2.21)

I2, h is easily bounded by using the Lipschitz property of K. We have

|I2, h |�CV2ah+1 V &1 |
Bh

dy du f ( y, u, t1)�
C2

ah+1

(2.22)

where in the last inequality we have used (2.4).
We discuss now I1, h .

|I1, h |�C |
D1, h

dt dy du |v| f ( y, u, t1)

_[|K(x(t)&x(t, y, u, t1))|+|K(x(t)& y)|]

�C |
D1, h

dt dy du |v| f ( y, u, t1)

�CV |
D1, h

f ( y, u, t) (2.23)

where we used the fact that K is bounded, and (2.8).
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Let us now define mh(t) as the mass of the particles in Bh such that
|x(t)& y|�C7ah �V : i.e.,

mh(t)=|
[( y, u) # Bh | |x(t)& y|<C7ahV&1]

dy du f ( y, u, t1) (2.24)

We notice that the time in which the test particles remains in an interval
of size R is bounded by C 2R. Moreover by using (2.4) we know that the
total mass of the particles in Bh is bounded by C�a2

h . Therefore we get

(2.21)�C 2ah V
1

a2
h

(2.25)

The sum in h is bounded because ah increase exponentially and therefore
we get (2.5). K

Proof of Theorem 2.1. The further steps to obtain Theorem 2.1 are
easy. Let us notice that (2.5) implies that

v2(t+2)&v2(t)�3C42 (2.26)

Let us assume (1.8) with :=1�2 true until time t1�A>0. Let us notice
that, the electric field being bounded this assumption can be satisfied by
choosing C1>- C3 large enough. Let T be the infimum of the set of times
for which (1.8) is false. Then for any t�T (1.8) is satisfied, while there
exists a sequence {k>0 ({k � 0 as k � �), such that (1.8) is false at time
T+{k . Let us consider a particle with velocity v such |v(T+{k)|>
V(T+{k)&=, =>0. We evolve it backward up to the first time, T+{k&2k ,
in which it returns to the same position. Because of (2.6) 2k is bounded
from below and therefore we get T+{&2k<T for k large enough. If k
and A are large enough and = is small enough v(T+{k&2k) satisfies the
hypothesis of Lemma 2.1. Then from (2.27) and (1.8) we get

v2(T+{k)�C1+C2(T+{k&2k)+3C42k+O(=)

which is, choosing C2>3C4 , in contradiction with

v2(T+{k)�C1+C2(t+{k)

as k � � and = � 0. K
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3. TWO-DIMENSIONAL CASE

In two dimensions some new features arise: the interaction is not
anymore bounded and the path of the test particle may not be closed. The
electrical field E

�
is defined by

E
�
(x

�
, t)=|

T 2
dx

�
$ K

�
(x

�
, x

�
$)(\(x

�
$, t)&\*) (3.1)

Here K
�
(x

�
&x

�
$)={x

�
G(x

�
&x

�
$), where G is the Green function of the

Laplace operator in T2 :

K
�
(x

�
&x

�
$)=

1
2?

:
�

k=0
\ :

i
�
: &i

�
&=k

{x ln |x
�
&x

�
$&2?i

�
|+ , &i

�
&=max(|i1|, |i2 | )

(3.2)

Before proving the main result of this section let us give some useful
preliminary results.

In this paper we do not use the explicit form of K
�

but only the properties:

|K
�
(x

�
&x

�
$) |�

C
|x

�
&x

�
$|T2

(3.3)

|K
�
(x

�
&x

�
$)&K

�
(x

�
&x

�
")|�

C |x
�
$&x

�
"|T2

min( |x
�
&x

�
$| 2

T2
, |x

�
&x

�
"| 2

T2
)

(3.4)

where | } |T2
denotes the distance in the flat torus.

Therefore the interaction between the electrons is not bounded.
However the electric field E

�
produced is not very large. Indeed inequality

(2.3) implies that for any time

|
T2

dx
�

|\(x
�
, t)|2<� (3.5)

In fact for any constant P we have:

\(x
�
, t)=|

|v
�
| �P

dv
�

f (x
�
, v

�
, t)+|

|v
�
|>P

dv
�

f (x
�
, v

�
, t)

�?P2 & f (x
�
, v

�
, t)&�+P&2 |

R 2
dv

�
|v
�
|2 f (x

�
, v

�
, t) (3.6)
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We choose P such that the right hand side of (3.6) is smallest, and by using
(2.2) we have:

\(x
�
, t)�C \|R2

dv
�

|v
�
|2 f (x

�
, v

�
, t)+

1�2

(3.7)

Then, by using (2.3), we obtain (3.5).
The bound (3.5) allows us to control the value of E

�
by V(t) (V(t) is

defined in (1.5)). In fact

&E
�
(x

�
, t)&�=sup

x
�

|E
�
(x

�
, t)|

�C &\(x
�
, t)&� R+\|T2

dx
�

|\(x
�
, t)|2+

1�2

_\||x
�
$ |�R

dx
�
$ |x

�
$| &2+

1�2

+C (3.8)

We choose R=(1+&\(x
�
, t)&�)&1 and we observe that (2.2) implies

&\(x
�
, t)&��CV(t)2 (3.9)

from which

&E
�
(x

�
, t)&��C+C(log(1+V(t)))1�2 (3.10)

This estimate, which plays an important role in the sequel, tells us that the
fast particles move for short time following almost the free motion.

Finally let us give the following bound on the electric field.

Lemma 3.1. Let us consider a subset 4 of T2_R2. Given
f (x

�
, v

�
)>0 let us define m4 , \4 , \4, � , as

m4=| dx
�

dv
�

f (x
�
, v

�
) /4(x

�
, v

�
)

\4(x
�
)=| dv

�
f (x

�
, v

�
) /4(x

�
, v

�
)

\4, �=sup
x
�

\4(x
�
)

where /4 is the characteristic function of the set 4.
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Then the electric field produced by the particles in 4 is bounded by

|E
�

|�C - m4 \4, � (3.11)

Proof. We notice that K
�

defined in (3.2) can be written as K
�
(x

�
&y

�
)=

(1�2?)[(x
�
&y

�
)�|x

�
&y

�
|2]+#(x

�
&y

�
), where # is smooth. Therefore we have

|E
�
(x

�
) |�| \ 1

2?
1

|x
�
&y

�
|
+C+ \4( y

�
) dy

�
�|

1
2?

1
|x

�
&y

�
|

\4( y
�
) dy

�
+Cm4

To obtain the largest value of the right handed side we rearrange the
particles closest as possible around x

�
in a circle of radius R. With this

rearrangement it is easy to evaluate the intensity, which results less than
C\4, �R+Cm4 . By using the fact that m4 is larger than CR2\4, � , we get

|E
�

|�C - m4 \4, � +Cm4

Since m4�(2?)2 \4, � , we achieve the proof. K

We prove the following theorem:

Theorem 3.1. Consider the Vlasov�Poisson equation (1.1)�(1.4)
with the initial conditions (1.6), (1.7), then the inequality (1.8) holds for
any :> 6

7 .

As in one dimension, we start by giving a bound on the growth of the
velocity in a short time 2. Then the theorem follows as an easy consequence.

Lemma 3.2. Consider an arbitrary time t1 and define At1
as the set

of particles (called test particles) having at this time a velocity |v
�
|�V(t1)�2.

For any #<1�6 there exist two positive constants C3 , C# , (depending
only on the initial data) such that if V(t1)�C3 then, for any particle in At1

| |v(t1+2)|&|v(t1)| |�C#
2

V #(t1)
(3.12)

for some 2 which satisfies

C4

V(t1)
�2�

C5

V(t1)
(3.13)

Proof of Lemma 3.2. In the proof, when no misunderstandings are
possible, we denote V(t1) by V. Let us consider a particle in At1

(called in
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the sequel test particle) with position x
�
(t1)=x

�
~ and velocity v

�
(t1)=v

�
~ .

Without loss of generality we suppose |v~ 1 |�|v~ 2 | and v~ 1>0. We study the
motion of the test particle.

Let us now consider the free motion x
� f (t)=x

�
~ +(t&t1) v

�
~ . At time

{k=t1+(2?�v~ 1) k, k=1, 2, 3,... we get xf, 1({k)=x~ 1 (i.e., the particle has the
same abscissa) and

xf, 2({k)=xf, 2(t1)+:k=x~ 2+:k (3.14)

where :=v~ 2�v~ 1 .
Therefore the evolution of x

� f, 2({k) is a shift on the circle of given
quantity : that is a Jacobi annulus.

By Poincare� 's theorem, see, e.g., ref. 1, we know that for any =>0
there exists a k=�2?�= such that

|xf, 2({k=
)&x~ 2 | T2

�= (3.15)

Denote {k=
as t1+2. By (3.15) we have 2�2?�=v~ 1 , and by the fact

that k�1 we have 2�2?�v~ 1 . Therefore

C6V &1<2<C7V &1=&1 (3.16)

which is (3.13). Now we choose ==V &1�6 and we consider the true trajec-
tory. By using (3.10) we observe that, for short times, its motion differs
very little from a free one. In fact, for any ( y

�
, u

�
), and for any t # [0, 2],

|v
�
(t, y

�
, u

�
, t1)&u

�
|�(C+C(log V )1�2) 2�1 (3.17)

|x(t, y
�
, u

�
, t1)&( y

�
+u

�
t)|T 2�(C+C(log V )1�2) 22�2 (3.18)

Therefore we have,

|x
�
({k=

, x
�
~ , v

�
~ , t1)&x

�
~ |T2

�|x
�
({k=

, x
�
~ , v

�
~ , t1)&xf ({k=

)|T2
+|xf ({k=

)&x
�
~ |T2

�2+=�2=�2V &1�6 (3.19)

As in the one-dimensional case, we must control the kinetic energy. Hence
the term

J=|
t1+2

t1

dt E
�
(x

�
(t), t) } v

�
(t)

=|
t1+2

t1

dt E
�
(x

�
(t), t1) } v

�
(t)+|

t1+2

t1

dt(E
�
(x

�
(t), t)&E

�
(x

�
(t), t1)) } v

�
(t)
(3.20)
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We evaluate the first term. We observe that the integral of E
�

} v
�

dt along a
closed curve vanishes, because the electric field is produced by a potential.
Hence

|
t1+2

t1

dt E
�
(x

�
(t), t1) } v

�
(t)=|

1
E
�

} dl
�

(3.21)

where 1 is a curve connecting x
�
(t1) with x

�
(t1+2). We choose 1 as the

segment connecting the starting point with the first return point, and
hence, by (3.10) and (3.19), we have:

} |
t1+2

t1

dt E
�
(x

�
(t), t1) } v

�
(t) }�C(log V )1�2 =�C(log V )1�2 V &1�6 (3.22)

We study the second term in the right hand side of (3.20). As in one dimen-
sion we write this term as

|
t1+2

t1

dt v
�
(t) } |

T 2
dy

� |R2
du

�
f ( y

�
, u

�
, t)[K

�
(x

�
(t)&x

�
(t, y

�
, u

�
, t1))&K

�
(x

�
(t)&y

�
)]

(3.23)

The strategy of the proof consists in making a partition, at time t1 , of the
particles producing the electric field into different sets: the slow particles,
the fast particles with a velocity far from that of the test particle, the
particles with a velocity close to that of the test particle. In each situation
we proceed differently as we will see. More precisely let us define

A1=[( y, u): |u|�V 1�2]

A2=[( y, u): |u|>V 1�2, |u&v(t1)|>V 1�2] (3.24)

A3=[( y, u): |u&v(t1)|�V 1�2]

and, for i=1, 2, 3,

Ji=|
t1+2

t1

dt v
�
(t) } |

Ai

dy
�

du
�

f ( y
�
, u

�
, t)[K

�
(x

�
(t)&x

�
(t, y

�
, u

�
, t1))&K

�
(x

�
(t)&y

�
)]

(3.25)

Particles in A1 . In this set it is useful to introduce a further partition
of the phase space into sets Bh : a particle belongs to Bh if its velocity v

�
at

time t1 is such that

B0=[x, v | |v|<a1]
(3.26)

Bh=[x, v | ah�|v|<ah+1], ah+1=2ah , a1=v* h=1, 2,...
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where v*>1 is a fixed quantity depending only on the initial data. In
particular v* is independent of V.

J1 can be written as �h*
h=1 Ih where v*2h*�V(t1)1�2, and

Ih=|
t1+2

t1

dt v
�
(t) } |

Bh

dy
�

du
�

f ( y
�
, u

�
, t1)[K

�
(x

�
(t)&x

�
(t, y

�
, u

�
, t1))&K

�
(x

�
(t)&y

�
)]

(3.27)

We evaluate the interaction produced on the test particle by the par-
ticles in Bh . First of all let us notice that if a particle ( y

�
, u

�
) belongs to Bh

then by (3.17) its velocity in the time interval (t1 , t1+2) is bounded by 3ah

and then it moves less then 3ah2. In fact

|v
�
(t1 , y

�
, u

�
, t)|�2ah+1�3ah (3.28)

We divide this electric field into two parts: the electric field produced
by the particles closer than R and the other ones. We choose R quite small
with respect to the macroscopic dimensions but large enough to be sure
that a particle in A1 during the time 2 moves less than R�2. Using (3.28)
we can satisfy this requirement choosing

R=6V &1�3 (3.29)

This last assumption allows us to evaluate easily the effect of these particles
by using the Lipschitz condition. For close particles we use the fact that the
test particle remains in a circle of radius R for a short time only.

More precisely we define

D1, h=[(t, x
�
, v

�
): (x

�
, v

�
) # Bh , |x

�
(t)&y

�
|<R] (3.30)

and D2, h as the complementary set of D1, h in (t1 , t1+2)_Bh .
We can write

Ih=I1, h+I2, h (3.31)

where, for _=1, 2,

I_, h=|
D_, h

dt dy
�

du
�

v
�
(t) } f ( y

�
, u

�
, t1)[K(x

�
(t)&x

�
(t, y

�
, u

�
, t1))&K(x

�
(t)&y

�
)]

(3.32)

I2, h is easily bounded by using the Lipschitz condition (3.4).
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We have

|I2, h |�C
V(t1) 22mhah

R2 (3.33)

where mh denotes the mass of the particles which belong to Bh .
We discuss now I1, h . A first bound is obtained by using the modulus:

|I1, h |�C |
t1+2

t1

dt |v
�
(t)| |

B1, h

dy
�

du
�

f ( y
�
, u

�
, t1)

_[|K
�
(x

�
(t)&x

�
(t, y

�
, u

�
, t1)|+|K

�
(x

�
(t)&y

�
) |] (3.34)

We observe that, by virtue of (3.28)�(3.29), |x(t)& y|T2
<R implies |x

�
(t)&

x
�
(t, y

�
, u

�
, t1)|T2

<3�2 R. Hence we have

|I1, h |�G1, h+G2, h

where

G1, h=CV |
D1, h

dt dy
�

du
�

f ( y
�
, u

�
, t1)|K

�
(x

�
(t)&x

�
(t, y

�
, u

�
, t1))|

(3.35)

G2, h=CV |
D1, h

dt dy
�

du
�

f ( y
�
, u

�
, t1)|K

�
(x

�
(t)&y

�
) |

Let us evaluate the first term. By using the Lemma 3.1 we have

G1, h�CV |
t1+2

t1

dt(mh(t) \h, �(t))1�2 (3.36)

where mh(t) denotes the mass of the particle of Bh at distance less than
3�2 R from the test particle, and \h, �(t) denotes the sup of the density of
the particles in Bh . By using the Cauchy�Schwarz inequality

G1, h�CV21�2 \|
t1+2

t1

dt mh(t) \h, �(t)+
1�2

(3.37)

We have arrived at a central point in the proof. The time for which the test
particle remains in a circle of radius CR is proportional to 2R and so, by
using (2.4) and the fact that \h, ��C(ah)2, we have:

G1, h�CV2ah(mh(t) R)1�2�CV2R1�2 (3.38)
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We evaluate in the same way G2, h , we add (3.33) and we obtain:

|Ih |�CV2 _2mhah

R2 +R1�2& (3.39)

Summing on h we get

|J1|� :
h*

h=0

|Ih |�CV2(V &1�6 log V ) (3.40)

where we have used the fact that h* is bounded by

2h*�CV 1�2 (3.41)

Particles in A2 . In this case the Lipschitz condition (3.4) is useless.
We write

|J2 |�L1+L2

where

L1=|
t1+2

t1

dt |
A2

dy
�

du
�

|v
�
(t)| f (y

�
, u

�
, t1) |K

�
(x

�
(t)&x

�
(t, y

�
, u

�
, t1)|

(3.42)

L2=|
t1+2

t1

dt |
A2

dy
�

du
�

|v
�
(t)| f (y

�
, u

�
, t1) |K

�
(x

�
(t)&y

�
) |

Let us evaluate L1 . We follow the test particle, and at any time we consider
many circles with center in the test particle and radius ri=V &22i&1,
i=0, 1,..., i*. We calculate the electric field produced by the particles in the
first circle by Lemma 3.1 and the electric fields produced by the particles
in the annuli by the bound (3.3). We have:

L1�CV :
i*

i=0
|

t1+2

t1

dt m2, i (t)[ri ]
&1+CV |

t1+2

t1

dt (m2, 0(t) \2, �(t))1�2

(3.43)

where m2, i (t) denotes the mass of the particles of A2 in the annulus with
center in the test particle and radii ri , ri+1 ; m2, 0 denotes the mass of the
particle of A2 contained in a circle with center in the test particle and
radius r0 ; \2, � denotes the sup in x

�
and in t # [t1 , t1+2] of the density

of the particles in A2 . The sum covers the whole torus: 2i*=CV 2. Using
the Cauchy�Schwarz inequality in the second term we get
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L1�CV :
i*

i=0
|

t1+2

t1

dt m2, i (t)[ri ]
&1

+CV(t1) 21�2 \|
t1+2

t1

dt m2, 0(t) \2, �(t)+
1�2

(3.44)

We will use here the important fact that a particle of A2 remains in a circle
of radius ri for a time {i which is bounded by C2V 1�2r i . Indeed the test
particle moves for a distance bounded by CV2. We divide this distance in
pieces of length 2? and we have, the relative velocity of the two particles
being larger than CV 1�2 in any piece, that the particle in A2 cannot stay in
the circle of radius ri longer than (C�V 1�2) ri . The number of pieces is
smaller than CV2 and therefore we get the bound. More precisely, let us
suppose, for the sake of simplicity, that |v1(t1)&u1|�|v2(t1)&u2| and
v1(t1)&u1>0. From (3.24) we get

1

- 2
V(t1)1�2�v1(t1)&u1�2V(t1) (3.45)

Moreover by (3.17)

1
2V(t1)1�2�v1(t1)&v1(t, y, u, t1)�4V(t1) (3.46)

for any t # [t1 , t1+2].
Let us define

z(t)=x1(t1)& y1+|
t

t1

ds(v1(s)&v1(s, y, u, t1)) (3.47)

The two particles can interact only if |z(t)mod 2? |�ri , i.e., if mink # Z |z(t)&2k?|
�ri .

Then {i is bounded by

:
k # Z

|
t1+2

t1

dt /( |z(t)&2k?|�r i )

�
2

V 1�2 :
k # Z

|
z(t1+2)

z(t1)
dz /( |z(t)&2k?|�ri )

�
2

V 1�2 \z(t1+2)&z(t1)
2?

+1+ 2r i

�
2

V 1�2 \4V2
2?

+1+ 2ri�CV 1�22ri (3.48)

where /(4) denotes the characteristic function of the set 4.
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We return now to (3.44). Using the previous estimate we obtain:

L1�CV2i*m2 2V 1�2+CV21�2(m2 \2, �r0 2V 1�2)1�2

�CV 1�2 log V2+CV 3�42�CV 3�42 (3.49)

where m2 denotes the mass in A2 , and where we have used the facts that
m2�C�V and \2, ��CV 2. We evaluate in the same way L2 and we get

|J2 |�CV 3�42 (3.50)

Particles in A3 . In this case the density is bounded by CV(t1) and
the mass is very small. More precisely denoting with m3 the mass of the
particles in A3 we get, by (2.4), m3�C�V 2. By using Lemma 3.1 we easily
obtain

|J3 | CV(\3, �m3)1�2 2�CV(VV &2)1�2 2=CV 1�22 (3.51)

where \3, � denotes the sup in x
�

and in t # [t1 , t1+2] of the density of the
particles in A3 .

We add J1 , J2 , J3 and (3.22) getting

|J |�C2V 5�6 log V (3.52)

Taking into account that J is the variation of v2�2 in the time interval
[t1 , t1+2] we get the inequality (3.12). K

Proof of Theorem 3.1. We can notice that (3.12) implies that for any
'>7�6 there exists C' such that

| |V(t1+2)|'&|V(t1)| '|�C'2 (3.53)

Then we proceed exactly as in the one dimensional case. K

Finally a short remark on the three-dimensional case. We are not able
to repeat the previous proof in this situation because in this case the inter-
action is too singular. In fact we can solve the equation (1.2) and, as well
known, we obtain an interaction in which |K

�
(x

�
&x

�
$)| behaves as |x

�
&x

�
$| &2

T3
,

when |x
�
&x

�
$|T3

� 0 ( | |T3
denotes the distance on the three dimensional

torus). So to prove a Theorem with :<1, we can mollify the interaction by
introducing a cutoff which bounds the interaction at small distances. The
other steps in the proofs are similar to that of the two-dimensional case.
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